Advanced Vehicle Testing Activity at Idaho National Laboratory:

Evaluation of Vehicles and the Grid together as a System

Idaho National Laboratory

www.inl.gov

Barney Carlson Research Engineer Energy Storage and Transportation Systems Idaho National Laboratory

Presented to the IEA Task 17 meeting April 16, 2015

INL/MIS-15-34697

INL Programs of National Importance

Research – Development – Demonstration – Deployment

3

The Idaho National Laboratory Site

We Maintain -

- 890 square miles
- 111 miles of electrical transmission and distribution lines
- 579 buildings
- 177 miles of paved roads
- 14 miles of railroad lines
- 3 reactors
- 2 spent fuel pools
- Mass transit system
- Security
- Museum
- "Landfills"
- 300 metric tons of used fuel
- Educational and research partnerships – CAES

...the National Nuclear Laboratory

Technical Challenges & Objectives

Advance Vehicle Testing and Analysis' objective is to support DOE's mission to reduce foreign imports by 50% by 2020, reduce green house gas emissions by 15% by 2020 & achieve 54.5 MPG CAFE mandate by 2025

- Identify real-world potential of technologies to displace petroleum
- Verify / maximize return on investment of DOE-funded technology development, primarily on:
 - Advanced energy storage (i.e., batteries) technologies and chemistries
 - Plug-in electric whole-vehicle technologies
 - Fueling system technologies
 - conductive and wireless grid-connected electric drive vehicle fueling infrastructure
 - Advanced climate control, power electronic, and other ancillary and accessory systems technologies
 - Advanced internal combustion engines (CNG/Turbocharged Direct Injection Diesel)

Feedback to DOE, OEMs, SAE, fleet managers, policy makers and other key stakeholders

Technical Challenges & Objectives

Advance Vehicle Testing and Analysis' objective is to support DOE's mission to reduce foreign imports by 50% by 2020, reduce green house gas emissions by 15% by 2020 & achieve 54.5 MPG CAFE mandate by 2025

- Identify real-world potential of technologies to displace petroleum
- Verify / maximize return on investment of DOE-funded technology development, primarily on:
 - Advanced energy storage (i.e., batteries) technologies and chemistries
 - Plug-in electric whole-vehicle technologies
 - Fueling system technologies
 - conductive and wireless grid-connected electric drive vehicle fueling infrastructure
 - Advanced climate control, power electronic, and other ancillary and accessory systems technologies
 - Advanced internal combustion engines (CNG/Turbocharged Direct Injection Diesel)

Feedback to DOE, OEMs, SAE, fleet managers, policy makers and other key stakeholders

- Areas of research at INL to improve Vehicle and Grid as a system
 - Renewable energy and non-fossil fuel energy sources
 - Wind, solar, hydro-electric
 - Waste heat (nuclear, other processes)
 - Vehicle Charging Infrastructure Evaluation
 - Utilization of home, workplace, and public charging
 - Wireless and Conductive Charging Evaluation
 - Efficiency
 - Power Quality impact to Grid
 - Test Procedure development
 - Advanced technology vehicles (BEV, PHEV, EREV, Adv. ICE)
 - On-road testing and data collection
 - Captured test fleet (195,000 miles per vehicle (313,800 km))
 - Data collection from privately owned vehicle
 - Energy Storage R&D, testing, and evaluation
 - Performance Assessment
 - Procedures and Protocols

INL – Battery Test Center and Advanced Vehicles Evaluation

Development of Next-Generation Low Cost / Reliable Batteries:

- INL capabilities to lead Performance Science
- Battery Testing Center & Advanced Vehicle Testing
- Strong partnerships with:
 - DOE-EERE (USABC)
 - OEMs
 - Battery Developers
- Enabling / accelerating next gen-batteries

Idaho National Laboratory

INL – Advanced Vehicles & Infrastructure

Enhance Consumer Experience with Advanced Technology Vehicles:

- Big Data Analysis
- Advanced Vehicle Testing & EV Infrastructure Laboratory
- Steward to DOE-EERE, OEMs, SAE & CARB
- Impact: Increasing ROI (Return of Investment) on alt-fuel infrastructure development / deployment

Heat Maps of EV Chargers

Global Standardization of wireless charging with SAE & automotive manufacturers

Alf-Fuel Corridor Analysis

Vehicle Charging Levels

- On-board charger (AC power delivered to vehicle)
 - Level 1 (120 VAC)
 - SAE J1772 (~1.4 kW)
 - Level 2 (208 240 VAC)
 - SAE J1772 (up to 19.2 kW but typically 3.3 or 6.6 kW)
- Off-board charger (DC power delivered to vehicle)
 - DC Fast Charge (~50 kW)
 - CHAdeMO
 - SAE J1772 CCS (Combo Connector)

Vehicle Charge Connection International Standards

		Type 1/USA	Type 2/Europa	GB /China	
Level 1 &	Alternating current (AC)	SAE J1772/IEC 62196-2	IEC 62196-2	GB Part 2	
Level 2	Direct current (DC)	IEC 62196-3	IEC 62196-3	GB Part 3/IEC 62196-3	

DC Fast Charge		System A CHAdeMO (Japan)	System B CATARC (PRC)	COMBO1 (US; System C COMBO2	
	Connector				
	Vehicle Inlet	۲		Ċ	
	Communication Protocol	CAN		PLC	

Vehicle Charge Connection - Tesla

Tesla Roadster

Tesla Model S

Advanced Vehicle Testing Activity at Idaho National Lab

On-Road Vehicle Driving and Charging Analysis

Advance Vehicle Testing Experience

- Since 1994, INL staff have benchmarked PEVs in field operations (via data loggers), closed test tracks and dynamometers
 - INL has accumulated 232 million miles (373 million km) and 44,300 AC MWh from 27,400 electric drive vehicles and 17,000 charging units

Example: EV Project

- 8,228 Leafs, Volts and Smarts,
 - 124 million test miles.
 - At one point, 1 million test miles every 5 days
- 12,363 EVSE and DCFC
 - 4.2 million charge events

Driving and Charging patterns

- Analysis of Driving Patterns
 - Energy consumption
 - Usage patterns
 - Common parking location
 - (i.e. should EVSE / chargers be located here)
- Analysis of Charging Patterns
 - Time of Day utilization
 - Home
 - Away from Home
 - DC Fast Charge
 - Power draw
 - Impact of variable time of day electricity pricing

VProject

Workplace Charging Impact

- Most charging occurs at Home and Work
- But "Other" charging may be critical to a few drivers
- Workplace Charging:
 - Enabled 14% of commutes to work in a Leaf
 - 12% more EV miles on average than not charging at work
 - 15 mile range increase on average due to charging at work

EV Miles Traveled (eVMT) Analysis Results

EREV (red) shows comparable eVMT as pure EV (green)

	Nissan LEAF *	Chevrolet Volt *	Ford Focus Electric	Ford C-Max Energi	Ford Fusion Energi	Honda Fit EV	Honda Accord PHEV	Toyota Prius PHEV
Number of Vehicles	4,039	1,867	2,193	5,368	5,803	645	189	1,523
Number of Vehicle Months	35,294	20,545	12,622	38,096	32,022	6,090	1,437	15,676
Total Vehicle Miles Traveled <i>VMT</i> (miles)	28,520,792	20,950,967	10,043,000	39,376,000	33,098,000	4,912,920	1,794,494	19,772,530
Total Calculated Electric Vehicle Miles Traveled e <i>VMT</i> (miles)	28,520,792	15,599,508	10,043,000	12,918,000	11,572,000	4,912,920	399,412	3,224,981
Avg. Monthly VMT	808.1	1,019.8	795.7	1,033.6	1,033.6	806.7	1,248.8	1,261.3
Avg. Monthly eVMT	808.1	759.3	795.7	339.1	361.4	806.7	278	207.0
estimated Annual VMT	9,697	12,238	9,548	12,403	12,403	9,680	14,986	15,136
estimated Annual eVMT	9,697	9,112	9,548	4,069	4,337	9,680	3,336	2,484
Annual eVMT (km)	15,606	14,664	15,366	6,548	6980	15,578	5,369	3998
Data Format Description	Key-On / Key-Off	Key-On / Key-Off	Enhanced Key-On / Key-Off			Trip Summary		Trip Summary
Geographic Characterization	CA, OR, WA, AZ, TX, TN, GA, D.C., PA, IL	CA, OR, WA, AZ, TX, TN, GA, D.C., PA, IL	Nationwide			CA, OR, NJ, MD, CT, MA, RI, NY	CA, NY	ZEV States and other states

* http://avt.inel.gov/pdf/EVProj/eVMTMay2014.pdf

Minimally Charged Vehicles are <u>Not Excluded</u> from analysis. These data include 14% of Accord PHEVs that achieve between 0-50 monthly eVMT

eVMT Histogram

Distance Bins: =0, >0 to 100, >100 to 200, >300 to 400, >400 to 500, etc.

Advanced Vehicle Testing Activity at Idaho National Lab

On-Road and Laboratory Testing and Evaluation

Advanced Vehicle Testing Process

Idaho National Laboratory

On-Road Vehicle Fleet Test Results

All Trips¹

EV Trips²

- Information and Results Published to AVTA website
 - Baseline Performance Testing
 - **Specifications**
 - Acceleration / Braking
 - Test Track energy consumption
 - Battery Test Results
 - Capacity
 - Power Capability
 - Fleet Fuel Economy results
 - Operation over vehicle life
 - Operating Costs Fact Sheet
 - Maintenance History

DC Fast Charging Impact Study on 2012 Leafs

- All Leafs were the same color avoid unequal solar loading
- Leafs' climate control is set at 23°C year round

NO appreciable difference in capacity loss (~2%) between

Level II and DC Fast Charging

After 50,000 miles (80,000 km):

http://avt.inel.gov/pdf/energystorage/DCFC_Study_FactSheet_50k.pdf

Electric Vehicle Infrastructure (EVI) Laboratory

- Evaluate Conductive and Wireless Charging Systems
 - Efficiency and energy consumption
 - EM field emissions (wireless charging only)
 - Power Quality (static and dynamic)
 - Total Harmonic Distortion
 - Power Factor
 - Cyber Security Assessment
- Wide range of power
 - Level 1, 120 VAC
 - Level 2, 208 / 240 VAC
 - DCFC, 480 VAC 3ϕ
 - Variable voltage source
 - Grid Emulator

Electric Vehicle Infrastructure (EVI) Laboratory Support of SAE J2954

- Support SAE J2954 Wireless Charging standards
 - providing test results
 - test procedure development
 - document refinement
- INL conducted independent testing using draft J2954 test procedures for:
 - System Efficiency and EM-field across a range of misalignment, coil gap, and output power
 - Off-board vehicle (bench test)
 - On-board vehicle
 - Debris tolerance and response
 - Mock floor-pan characterization
- INL is the only DOE lab to publish wireless charging benchmarking results

Fact Sheet: Wireless Charger Vehicle Test Results

Fact Sheet: Wireless Charger Bench Test Results

Charger Power Quality

- Power Quality evaluated across range of charge current for Level 1 and Level 2
 - Efficiency
 - Power Factor
 - Total Harmonic Distortion
- This negatively impacts the grid during a demand response curtailment
 - Efficiency decreases
 - Power Factor decreases
 - Distortion on Current increases
- Figures on right are results from – 2012 Chevy Volt

Battery Test Center at Idaho National Lab

Battery Assessment at INL

- Independent, science-based performance assessment of energy storage devices
 - Environmental control
 - Software analysis tools for data analysis and reporting.
 - Standards developed for data acquisition, analysis, quality, and management.

Protocols & Procedures

 Internationally accepted manuals for performance assessment of energy storage systems.

Quality Results

- Flexible state-of-the-art energy storage test facility capable of supporting current and future development activities.
- Rigorous NIST traceable calibration procedures for in depth uncertainty analysis
- Temperature controlled testing for reliable and repeatable results.

Battery Test Manuals

• Recently Published Manuals:

- Battery Test Manual for Plug-In Hybrid Electric Vehicles (Sept. 2014)
- Battery Test Manual for 12V Start/Stop Vehicles (Nov. 2013)
- Battery Test Manual for Low-Energy Energy Storage Systems for Power-Assist Hybrid Electric Vehicles (Apr. 2013)
- Battery Calendar Life Estimator Manual, Rev. 1: Modeling and Simulation (Oct. 2012)
- Battery Technology Life Verification Test Manual Rev. 1 (Dec. 2012)
- Manual Revisions ongoing:
 - EV Manual, Revision 3

http://www.uscar.org/guest/article_view.php?articles_id=86

Industry Partnerships

INL Battery Test Center Facilities and Equipment

- Over 500 items tested per year
- ~20,000ft² lab space
- 671 cell test channels
- 27 module test channels
- 7 pack test channels
- ~100 controllable thermal chambers
- Vibration test system

Summary

INL Advanced Vehicle Testing & Analysis is a DOE Core Capability for advanced automotive technologies

 INL has accumulated 232 million miles (373 million km) and 44,300 AC MWh from 27,400 electric drive vehicles and 17,000 charging units

Advanced energy storage

– Performance Science analysis of Li-ion Batteries from half-cell to vehicle and back

Plug-in electric vehicles

- Continued testing and analysis of plug-in vehicles
- Big-Data analysis of vehicle usage
- Connected Automated Vehicles

Infrastructure

- Wireless Charging & Level I, II, III standardization, energy & efficiency
- Big-Data analysis of infrastructure usage
- Cyber security

Additional Vehicle Testing

- Advanced climate control, power electronic, and other ancillary and accessory systems technologies
- Advanced internal combustion engines (CNG/Turbocharged Direct Injection Diesel)

Tech to Market Workshop at INL

Evening Industry Reception May 18, 2015

T2M Workshop May 19 - 20, 2015 Idaho Falls, ID

Directing dialogue on the high quality, detail oriented validation needed to improve the efficient transfer of energy storage technology to the market.

Reception the high d validation e efficient age rket.

Idaho National Laboratory